

Accuracy of the predictions of modeled emission hotspots based on real-world measured vehicle activity and emissions

<u>Christina Quaassdorff</u>^{1,2}, Tanzila Khan², H. Christopher Frey²

- ¹ Laboratory of Environmental Modelling, Universidad Politécnica de Madrid.
- ² Department of Civil, Construction, and Environmental Engineering, North Carolina State University.

cquaass@ncsu.edu

San Diego, California March 13-16, 2022

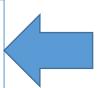
Research objective

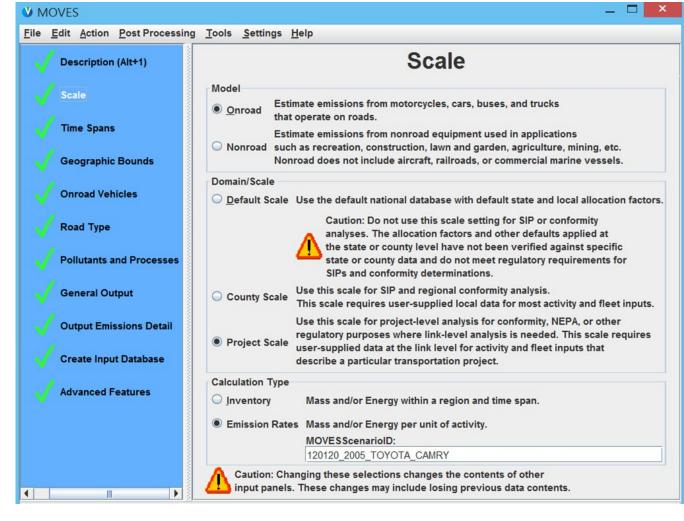
To evaluate the accuracy of a vehicle tailpipe emission model to predict hotspots in comparison to measured hotspots.

San Diego, California March 13-16, 2022

Methods: On-road vehicles emission model

US-EPA MOVES 3


Vehicle type (passenger car)


Vehicle age

Vehicle activity (1Hz speed profiles and RG)

Ambient condition

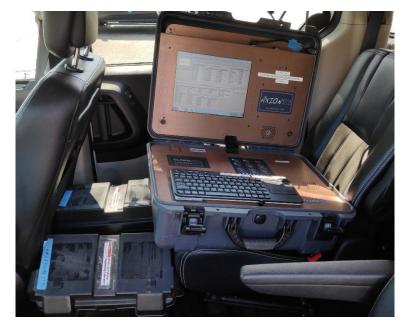
Fleet average segment based emission rates

Case study: 10 Tier 2 gasoline sedan Passenger Cars

Model inputs

Vehicle characteristics that are not modeled

Vehicle	Model Year	Age when measured (years)	Rated HP	Curb weight (lb)	RFE (mpg)	Mileage (mi*1000)
Toyota Camry	2005	7	160	3164	25	106
Toyota Camry	2012	0	178	3240	28	19
Kia Forte	2013	0	156	2791	29	9
Honda Accord	2012	2	185	3279	26	30
Ford Fusion	2016	0	175	3431	26	0.2
Toyota Corolla	2009	7	132	2745	30	174
Hyundai Elantra	2010	7	132	2747	29	74
Mazda 6	2006	12	160	3166	23	173
Honda Civic	2011	7	140	2831	29	63
Hyundai Sonata	2009	10	175	3266	25	143


San Diego, California March 13-16, 2022

Methods: Activity and emission measurements

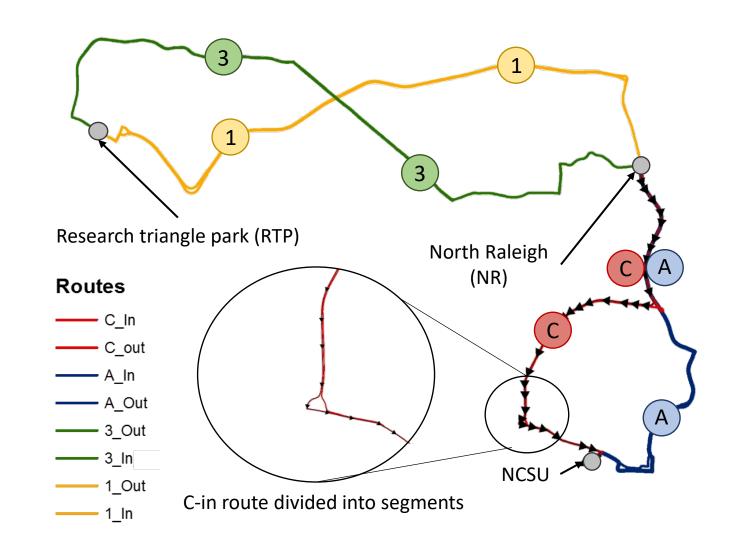
Portable Emission Measurement System (PEMS): CO₂, CO, HC, NO_x

On-Board Diagnostic scantool (OBD): 1Hz vehicle activity data (e.g. speed)

Global positioning system (GPS) with barometric altimeter.

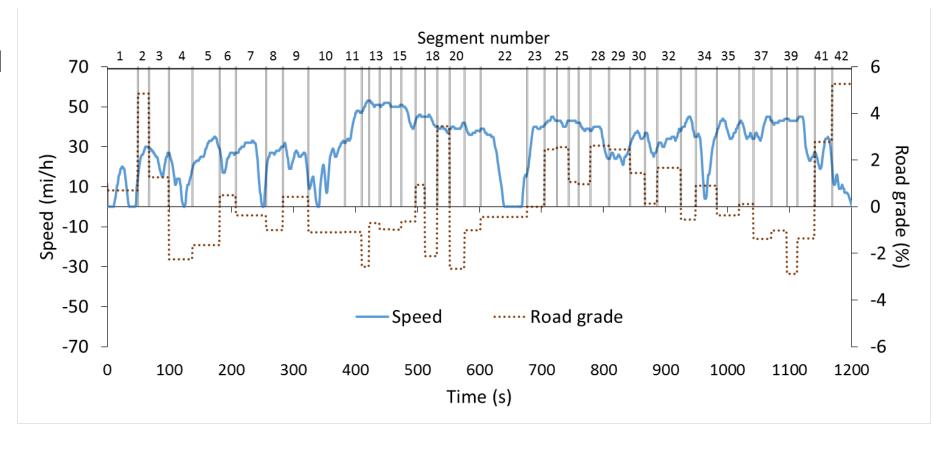
Road Grade (RG) estimation based on linear regression of elevation versus distance. Ranging from -5.3 to 5.7%

San Diego, California March 13-16, 2022



Methods: Measured routes

- 8 one-way routes:
 - 4 out routes from NCSU to NR and from NR to RTP
 - 4 in routes from RTP to NR and from NR to NCSU
- Broad coverage of road types, speed limits and RG
- Total distance 110 mi
- 450 segments, based on:
 - constant RG
 - speed limits
 - road types
- Average length of 0.25 mi (0.005-0.49 mi)



Methods: segmented trajectories

Example segmented trajectory for Ford Fusion vehicle over route A-out with 42 segments

- Second by second vehicle speed
- Segment average road grade

San Diego, California March 13-16, 2022

Methods: Hotspots definition

Emission **hotspots** are defined as segments within the top 10% (≥ 90th percentile) of segments average emission rates for each pollutant.

Methods: Model hotspot prediction accuracy

March 13-16, 2022

• Confusion matrix: summary of prediction results per pollutant:

450 segments per pollutant	Modeled +	Modeled -
Measured +	True positive (TP)	False negative (FN)
Measured -	False positive (FP)	True negative (TN)

Model accuracy (Acc) predicting hotspots and non-hotspots per pollutant:

$$Acc (\%) = \left(\frac{N_{TP} + N_{TN}}{N_{AP} + N_{AN}}\right) \times 100$$

Where:

- N_{TP} =count of predicted true positives (exact matching of top 10% of segments)
- N_{TN} =count of predicted true negatives
- N_{AP} =count of actual positives, i.e. hotspot segments in the measurements (n=45)
- N_{AN} =count of actual negatives, i.e. non-hotspot segments in the measurements (n=405)

Methods: Model hotspot prediction precision

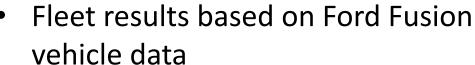
• Model precision (P) identifying hotspot segments:

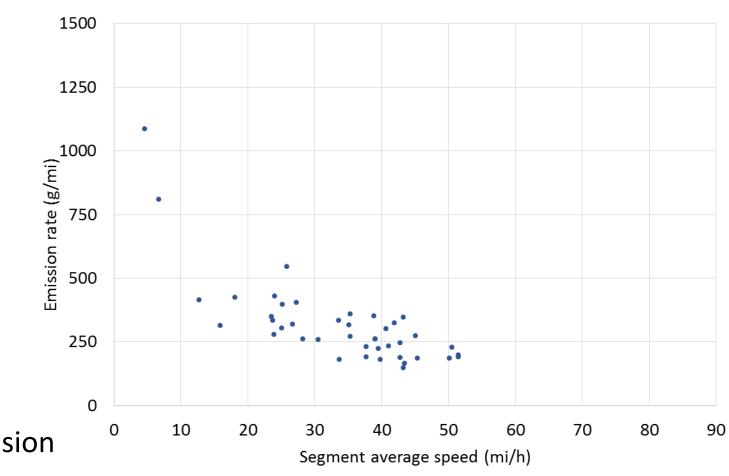
$$P (\%) = \left(\frac{N_{TP}}{N_{AP}}\right) \times 100$$

Where:

- N_{TP} =count of predicted true positives (exact matching of top 10% of segments)
- N_{AP} =count of actual positives, i.e. hotspot segments in the measurements (n=45)
- Near misses of measured hotspots: segments which have segment average modeled emission rates that are below the top 10%, but are in the top 20% (\geq 80th percentile).

San Diego, California March 13-16, 2022





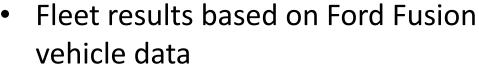
Results: MOVES3 modeled emission rates per segment

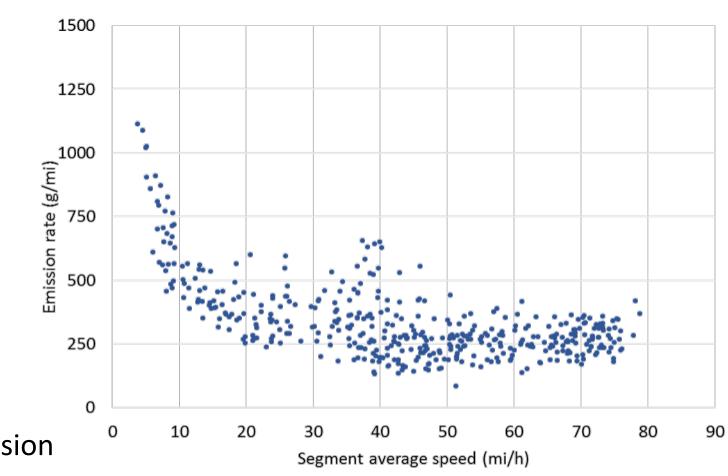
 CO_2

- Route A-out
- 42 segments (points)

Ford Fusion

San Diego, California March 13-16, 2022





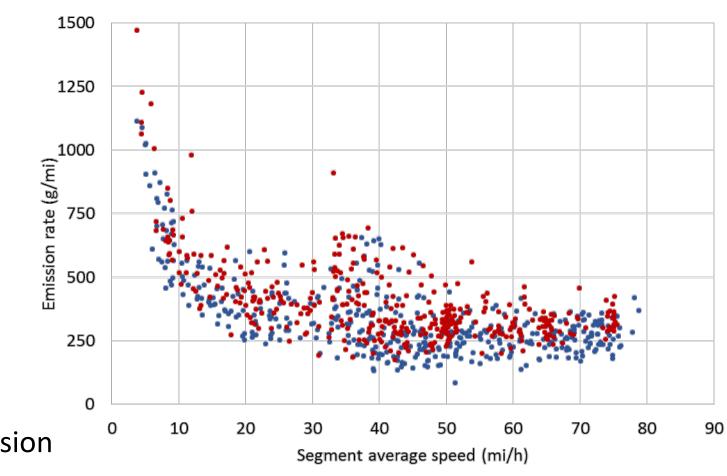
Results: MOVES3 modeled emission rates per segment

 CO_2

- All routes
- 450 segments (points)

Ford Fusion

San Diego, California March 13-16, 2022



Results: MOVES3 modeled emission rates per segment

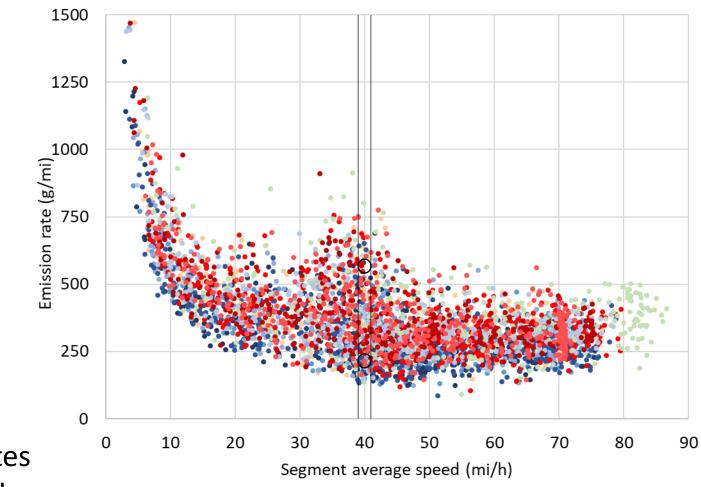
 CO_2

- All routes
- 450 segments (points)

Ford Fusion

Honda Civic

San Diego, California March 13-16, 2022



Results: MOVES3 modeled emission rates per segment

 CO_2

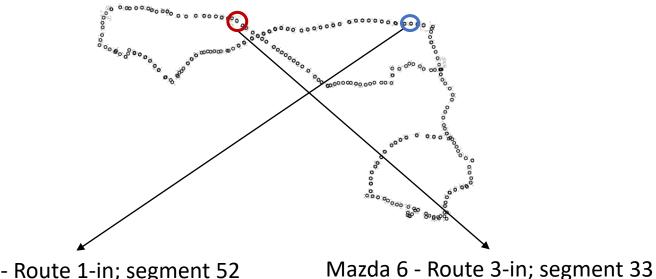
4201 segments (points) over 8 routes Higher avg emission rates in red colors Lower avg emission rates in blue colors

- Toyota Camry
- Kia Forte
- Ford Fusion
- Hyundai Elantra
- Honda Civic

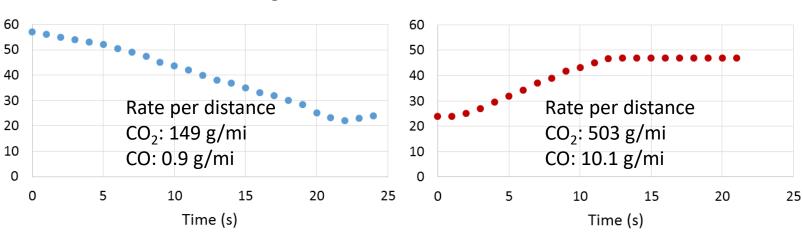
- Toyota Camry
- Honda Accord
- Toyota Corolla
- Mazda 6
- Hyundai Sonata

San Diego, California March 13-16, 2022

Results: Modeled emission rates variability for similar


average speed Selected segments second-by-second speed profiles

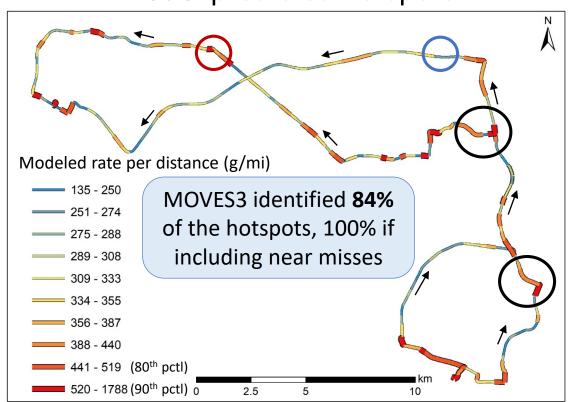
As an example:

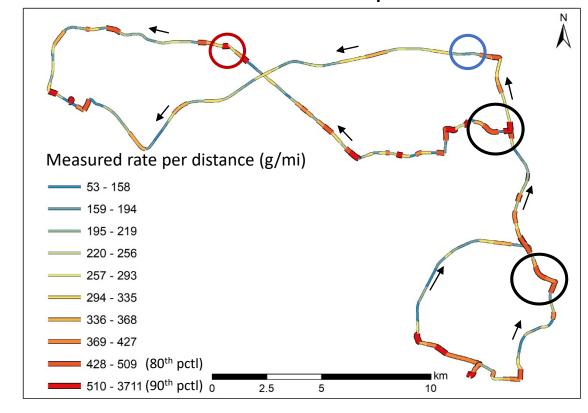

Average speed around 40 mi/h (39.5 - 40.5 mi/h)

Emission rates:

- Lower emission rates for deceleration patterns.
- Higher emission rates for acceleration patterns.

Mazda 6 - Route 1-in; segment 52

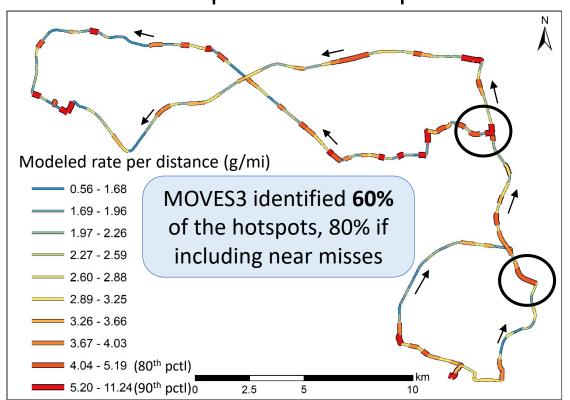


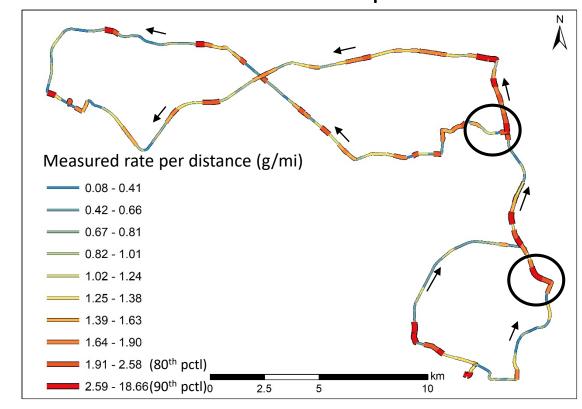


Results: MOVES3 modeled and measured emission rates per segments – average for 10 vehicles - CO₂

Model predicted hotspots

Measured hotspots





Results: MOVES3 modeled and measured emission rates per segments – average for 10 vehicles - CO

Model predicted hotspots

Measured hotspots

San Diego, California March 13-16, 2022

Results: Model accuracy predicting hotspots and non-hotspots for several pollutants

CO₂ 450 segments	Modeled +	Modeled -
Measured +	38	7
Measured -	7	398

CO 450 segments	Modeled +	Modeled -
Measured +	27	18
Measured -	18	387

NO _x 450 segments	Modeled +	Modeled -
Measured +	13	32
Measured -	32	373

HC 450 segments	Modeled +	Modeled -
Measured +	26	19
Measured -	19	386

Accuracy and precision per pollutant

	CO_2	CO	NO _X	HC	
Precision	84%	60%	29%	58%	Results are based on a
Accuracy	97%	92%	86%	92%	sample of 10 vehicles

San Diego, California March 13-16, 2022

Results: Model accuracy predicting hotspots and non-hotspots for several pollutants – including near misses

CO₂ 450 segments	Modeled +	Modeled -
Measured +	45	0
Measured -	7	398

CO 450 segments	Modeled +	Modeled -
Measured +	36	9
Measured -	18	387

NO _x 450 segments	Modeled +	Modeled -
Measured +	23	22
Measured -	32	373

HC 450 segments	Modeled +	Modeled -
Measured +	34	11
Measured -	19	386

Accuracy and precision per pollutant

	CO ₂	CO	NO _X	HC	
Precision	100%	80%	51%	76%	Results are based on a
Accuracy	98%	94%	88%	93%	sample of 10 vehicles

San Diego, California March 13-16, 2022

Conclusions

- The model is highly accurate, at 86% to 97% across pollutants, in locating the measured hotspots and non-hotspots (88 % to 98% including near misses).
- The precision of the model in identifying hotspots, based on the exact matching of the top 10% of segments, depends on the pollutant. The lower precision estimation for NO_X can be related to the sample size.

Future steps

• Expand the analysis to a bigger fleet based on a dataset of up to 232 vehicles covering emission standards from tier 1 to tier 3.

San Diego, California March 13-16, 2022

Thank you!

cquaass@ncsu.edu

IRTEMS – Instantaneous Road Traffic Emissions Modelling System for cities project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 896417. The information here provided reflects the author(s) view. It does not necessarily reflect the views or policy of the European Commission and REA which are not responsible for any use that may be made of the information it contains.